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ESTIMATE OF THE TEMPERATURE FIELD IN A COMPRESSIBLE 

MEDIUM 

T. A. Butina UDC 539.4.012.1.536 

Short-duration dynamic loading causes the development and propagation of shock waves 
(SW) in a continuous medium. The intensity of the shock waves depends on the intensity of 
the load applied and the physicomechanical characteristics of the material. As a result of 
high compression, the material is heated [i]. As the SW progresses, the region of material 
compression shifts, and the temperature of the medium changes. Estimates of the temperature 
field in a compressible medium and the residual heating of the material are of great inter- 
est for practical applications. 

The methods for calculating the elastic potential and the temperature at the wave front 
are presented in [2, 3]. The Hugoniot adiabats, the atomic interaction potentials, and the 
Gruneisen coefficients have been determined in [4] for a number of metals. A detailed sur- 
vey of the literature is provided in [5] along with an analysis of the known equations of 
state (see also [2, 4]). The methods of estimating the temperature on the Hugoniot adiabat 
and the residual temperature are given in [6-9]. 

The state of the continuous medium is described by the following system of equations 
[i0]. The equation of motion is 

Po o,, a (k-~)(s~-so) (i) 
v or = - - ~ ( P - - S r )  + ~ , 

where V = P0/P0;P0 and p are the initial and the present values of the density, respective- 
ly, u is the mass velocity, r is the present radius, p is the mean stress, and S r and S e 
are the components of the stress deviator; k = i, 2, and 3 for the two-dimensional, cylin- 
drical, and spherical cases, respectively. 

The continuity equation is given by 

# 1 0 ( rh- lu )  ( 2 ) 
V r Or 

with  an a l lowance  f o r  t he  t h e r m a l  c o n d u c t i v i t y ,  t he  ene rgy  e q u a t i o n  i s  g iven  by 

k ~rO (rk--lgOT]. (3) = v + ( k -  t)  so + 
\ 

Here, K is the thermal conductivity coefficient, T is the temperature, and E is the total 
energy. The expressions for the strain are the following: 

~,- = ~--~ ~j , ~0 = 7-- y\~/ (4) 
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(e is the displacement). The relationship between the stress and strain deviators is pro- 
vided by Hooke's law. 

The Mie-~runeisen equation is contemplated as the equation of state: 

p = pelq- ?o(E -- Fe~ (5) 

(Pes and Ees are the elastic pressure and energy, respectively, and ~0 is the Gr{ineisen co- 
efficient). The following was obtained for Pes in [9]: 

Pel-- Po exp (Yon) q- P~ --  ?oR(q) - G(n),~ (6 )  

where q = 1 - P0/P, and PH is the pressure on the shock adiabat; the R(q) and G(q) functions 
are given by 

n In ( -- ~n) 
R(N)-----pa2 2(l--pN) z ~(l--~N) ; (7 )  

G (n) = ~;o exp (Veil) l exp (--  Yon) R (~) d~ (8)  
0 

(a and 8 are the coefficients of the well-known expression D = ~ + $u, which relates the 
velocity of the SW front D to the mass velocity of the substance u). According to [9], we 
write (5) as follows: P = P0 exp (Y0q) + ~ + Y0P0CV T [cv is the specific heat, and N = PH - 
70R(n) - G(D)]. Under normal conditions, p = 0 and q = 0 (we neglect the atmospheric pres- 
sure), so that 

Po =--Po?ocvT; (9 )  

E, = --CvpoT. ( lO)  

Utilizing (9) and (i0), we pass to the equation of state where all the parameters are mea- 
sured from zero: 

P = Po exp (?oH) + H + ?o(E --  ~1 ) = ~1 --  Po + Po?oCvt (11)  
L ', 

(E, EeZ, and t a r e  t h e  t o t a l  i n t r i n s i c  e n e r g y ,  t h e  e l a s t i c  e n e r g y ,  and t h e  t e m p e r a t u r e ,  r e -  
s p e c t i v e l y ) .  

The i n c r e m e n t  o f  t h e  t h e r m a l  p a r t  o f  t h e  i n t r i n s i c  e n e r g y  E T i s  d e t e r m i n e d  by t h e  d i f -  
f e r e n c e  dE T = dE - dEe~. The temperature increment is calculated as follows: 

d T  = ( d E  - -  (12) 

Equation (12) accounts for the process of linkage between the strain and temperature fields. 
Actually, assuming that there is only elastic strain at a point, the total energy increment 
is dE = Sijd~ij- pdV, while the elastic energy increment is given by 

dEe~- Sude u --  ~flV.  (13)  

With an allowance for (9) and (i0), it is evident from (13) that the following expression 
holds for the temperature increment: 

dt ... --(To • t)dV, (14)  

which characterizes the temperature change due to the linkage between the strain and heating 
processes. The above relationships generalize the consideration of linkage in [ii] to en- 
compass the case where t - To, since the assumption that t << To is no longer used. Consid- 
eration of the linkage in the classical formulation results in the fact that the temperature 
of the body remains the same after the motion is damped. According to [ii], the derivative 
of the temperature with respect to time, obtained from the energy equation, is given by 

ir = )cAT 3L+ 2~t 3aTTo'evo, (15) 
PoCv 

where I and p are the Lame coefficients, ~T is the thermal expansion coefficient, ~vo is 
the volume strain, and X = K/p0cv. After integrating (15) with respect to time from �9 = 0 
to x ~ ~ and over the volume v, we obtain 
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~ aT dS 3 k + 2 p  
T I ~  - -  T 1~=o = Z 7n PoCV 3aTTEvo" 

I n  t h e  a b s e n c e  o f  h e a t  e x c h a n g e  t h r o u g h  t h e  b o u n d a r y ,  and c o n s i d e r i n g  t h a t  lim~vo = 0, we 

f i n d  t h a t  t h e  t e m p e r a t u r e  i n c r e m e n t  i s  e q u a l  t o  z e r o .  

C o n s i d e r a t i o n  o f  t h e  l i n k a g e  in  a c c o r d a n c e  w i t h  (14)  does  n o t  a l l o w  us  t o  i n t e g r a t e  
t h e  e n e r g y  e q u a t i o n  in  t h e  a b o v e  m a n n e r ,  s i n c e  t h e  c o e f f i c i e n t  in  f r o n t  o f  Evo depend s  on 
t h e  t e m p e r a t u r e  i t s e l f ,  and ,  t h e r e f o r e ,  t h e  t e m p e r a t u r e  i n c r e m e n t  i s  a p o s i t i v e  q u a n t i t y  
in  t h i s  c a s e � 9  A c t u a l l y ,  by  d i v i d i n g  t h e  e n e r g y  e q u a t i o n  by T, we o b t a i n  a c c o r d i n g  t o  ( 1 4 ) ,  

-~ PoCv i Poev 

Performing integration over the volume and with respect to time, we write 

T I ~  - -  T [~=o ~- j 0 Y ~ dS dr + (VT) 2 dv dr a~ + 2~ 3~re 
~o CV vo, 

whence 

As a calculation example, we consider an aluminum plate with a thickness of 0.5 cm, 
the surface of which is acted upon by a rectangular pressure pulse with an amplitude of 
4 GPa and a duration of 0.15 ~sec, while the other plate surface is stress-free. The ini- 
tial plate temperature is equal to zero. The system of equations (1)-(8) and (12) was used 
for determining the change in the stressed-strained state and the temperature field. The 
problem was solved in the linkage formulation by means of the method of finite differences. 
The scheme of second-order accuracy and straight-through calculation was used, and artifi- 
cial viscosity of the Neumann-Richtmayer type was introduced. 

Figure 1 shows the distributions in the direction of the plate thickness of the mean 
stress profile, the radial strain rate, and the temperature field at different instants of 
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time (curves 1-3 correspond to ~ = 0.16, 0.48, and 0.94 ~sec, respectively). It is evident 
that the pulse progression in the direction of the plate thickness is accompanied by a high 
strain rate and the development of a temperature field. As the compression region shifts, 
there is a gradual attenuation of the pressure pulse, caused by dissipative processes, 
which leads to a reduction in temperature. 

The shape of the mechanical pulse acting on the surface and its amplitude were varied 
during the investigation, and plates made of different materials were used. Calculations 
show that the temperature field profile is determined by the profile of the load applied. 
The temperature of the medium in the compression region and the residual temperature in- 
crease with the amplitude of the load applied. 

Using the relationships given in [i0], we can readily extend the pattern described to 
the plastic flow range. Thus, as a result of impact compression, residual heating also 
occurs without plastic strain. The solution of the problem stated makes it possible to es- 
timate the temperature field arising under dynamic loading in a medium in the moderate pres- 
sure range, which is important with regard to practical applications. 
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